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Abstract. The  Gaussian white noise I C W N )  model immersed in a t ime-dependent electric 
field permits an  exact evaluation o f t h e  retarded/advanced Green functions. The (quan tum)  
kinetic equation can be written down with the aid of the Baym-Kadanoff formalism, and  
the response to a step-like electric field has been analysed in two recent papers.  Both 
papers report exact solutions which, however, are  different. The discrepancy is traced to 
different (bu t  plausible) ways of treating the thermal instability inherent in the G W N .  I t  
is shown how the derived kinetic equation can be used to extract other transport  properties 
as  well. 

1. Introduction 

Quantum kinetic equations have, apart from their conceptual interest, become a topic 
of active research in the light of recent advances in the fabrication of microstructures, 
where transport takes place under conditions not compatible with the assumptions 
implicit in the traditional Boltzmann equation approach. For realistic scattering 
mechanisms the quantum kinetic equations are extremely complicated and therefore 
it is of significant interest to examine simplistic interactions in order to understand 
better the mathematical structure of these equations. The Gaussian white noise model 
( G W N )  (see below for the definitions used in this work) provides a good candidate for 
such a ‘testing laboratory of the theory’ because of the particularly manageable 
mathematics related to it. Indeed, two recent publications (Hansch and Mahan 1983, 
to be referred to as H M ,  Jauho 1985a, to be referred to as J )  have developed quantum 
transport equations based on the Baym-Kadanoff formalism (see these two papers for 
additional references), and then applied these to the GWN to analyse its transient 
dynamics. However, the final results of these two papers are different, and the main 
purpose of this paper is to re-examine the various assumptions underlying the two 
calculations and to point out where the differences arise. In addition, we complete 
the calculation whose initial step was described briefly in J ,  and give some alternate 
derivations to previously presented results. Finally, since the H M  result agrees with 
the Kubo formula, and J with the Boltzmann equation, our  analysis sheds some light 
on the different assumptions behind the two approaches. 

The key point is that G W ~  possesses an inherent thermal instability (as already 
pointed out by HM): GN\  does not maintain thermal equilibrium. The question is 
then: can one calculate the response of G W \  to an external perturbation using a 
transport equation that does not maintain thermal equilibrium, or does one have to 
modify it in some sense? The first approach is that ofJ while H M  follow the second route. 
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2. Determination of the retarded Green function 

Before turning to the kinetic equations we must first solve the dynamics, i.e. determine 
the disorder-averaged retarded Green function for GWN in an external electric field. 
We choose the following form of the field-free Hamiltonian (see Jayannavar and Kumar 
1982, Girvin and Mahan 1979)t 

H = d3x $ + ( x ) (  - f V 2 ) $ ( x )  + d3x $+(x) V ( X ,  t ) $ ( x ) .  5 5 
Here the parametric time dependence of the impurity potential reflects the random 
thermal fluctuations of the environment. The average over disorder is performed with 
the formula 

and higher even averages are given as a sum of all pairwise averages. Standard 
diagrammatic techniques lead to the self-energy 

C ( x , y , t , t ' ) = u ( x - y ) G ( x , y ,  t , r ' ) 8 ( t - t ' )  (3) 

where G is the full impurity-averaged Green function. In  writing (3) we have neglected 
the so-called crossed diagrams; since our emphasis is not on localisation effects, this 
should be of no consequence. Further, Girvin and Mahan (1979) have shown in the 
context of a related phonon model that vertex corrections, in fact, vanish. Adding the 
external field does not change the diagrammatic structure of the theory, and one ends 
up with the following Dyson equation for the retarded Green function 

GYP, t, t ' )  = G(P, t, t ' )+  dt ,  G(P, t, t l )  Y(P-q)Gr( q, t l ,  tl)Gr(p, t I ,  t ' )  (4) J 4 

where ~ ( p )  is the Fourier transform of u ( x ) ,  and 

is the exact propagator for free particles coupled to an electric field via a vector 
potential, E (  t )  = +/at A(  1 )  (Jauho and Wilkins 1982, 1984). This non-linear equation 
for G' is solved with the ansatz 

where 

Yo = C Y (  P + 4) .  
4 

(7) 

t A lattice version of (1 )  has been analysed in detail by Ovchinnikov and Erikhman (1974) and Madhukar 
and Post (1977). 
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One obtains, in agreement with HM,  

G'(p, t ,  t ' )= - - i f l ( t - t ' ) exp  d t ,  E ( p - A ( t , ) ) - i y o ( t - t ' )  

and it is readily seen that (8) indeed satisfies (4). 

3. Kinetic equations 

Let us now turn to the kinetic properties of the GWN.  Rather than following the integral 
formulation of transport theory as done by H M  and  J ,  we give here an alternate 
derivation. We employ the Kadanoff -Baym formalism (Kadanoff and  Baym 1962, 
Langreth 1976, Jauho 1983), where the central quantity of interest is the correlation 
function G'(x, t ,  x', t ' )  = i(i,b+(x', t ' ) $ ( x ,  t ) )  which is the analytic continuation of the 
(imaginary) time-ordered Green function. To discuss kinetic equations it is convenient 
to work with the Wigner variables R = i ( x +  x'), r = x - x', T = f( t + t ' ) ,  and T = ( t  - t ' ) .  
We define the correlation function in the conventional way: 

G'( p ,  w,  R, T) = T e'"'' d3r exp( -ip * r)i(i,b'(R -+r ,  T -fT)$(R+;r, T + ~ T ) )  

(9) 
I d  I 

from which the Wigner distribution function can be extracted via 

f ( p ,  T)=- iG ' (p , . r=O,  T )=- i  - G < ( ~ , w ,  T) .  I :: 
Note that in the present uniform case we have dropped the spurious spatial variable 
R. The Wigner function obeys the following exact transport equation (see, e.g., Jauho 
1985b) 

X a 
- f ( p ,  T ) = -  J du{CrG'+C'Gd-GrC'-G'Ca} 
aT --oc 

where the time variables in the integrand have the structure 

AB = A[ T -  U ,  ; ( U  + T)]B[ U - T, $ ( U  + T ) ] .  (12) 

Note that in general it is not possible to obtain a closed equation for the Wigner 
function because the right-hand side of (1 1) involves the full correlation function; 
however, in the present case the one-point nature of the GWN interaction (as evinced 
by the 6 function in time in equation (3)) allows one to obtain a closed equation for 
f: To complete the derivation of the kinetic equation the self-energies in (1 1) must be 
specified; it is at this juncture where the treatments of H M  and J depart. Consider first 
the calculation of HM.  They choose 

Zr(t, t ' )  = -i/2y06( t - t ' )  = -C'( t ,  t ' )  

C'(t ,  t ' )  =iy, - n F ( E )  exp[-ie(t-  t ')] I :; 
C'(t ,  t ' ) =  -iyo - ( l - n F ( ~ ) ) e x p [ - i ~ ( t - t ' ) ] .  I :; 
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Here X s  are the analytic continuations of the self-energy X, defined analogously with 
G z ,  and nF(&) is the Fermi function. Note that this choice satisfies the consistency 
check 2‘- Ed = E> - 2 < .  The expression for Er is exact ( i t  emerges from the self- 
consistent solution to the Dyson equation as given by equations ( 6 ) - ( 8 ) ) ,  and the 
expressions for Xs imply that the G W N  is treated as if it maintained thermal equilibrium. 
Expressed in other words, the use of E< (as given by ( 1 3 ) )  in the kinetic equation 
means that the scattering events increasing the population in a given momentum state 
p (i.e. the ‘scattering-in’ term) act as if  the particles were emerging from an underlying 
thermal equilibrium state. As shown by H M ,  the G W N  is never in thermal equilibrium: 
a particle interacting with G W N  heats up  (see also below where we make this statement 
more quantitative). Thus the choice ( 1 3 )  is a natural way of impeding the scattering- 
induced heating: recall that one is looking for the effects of the applied field and not 
for some spurious effects caused by the interaction. 

With ( 1 3 ) ,  and introducing the kinetic momentum k = p - A (  T ) ,  equation ( 1  1 )  
becomes 

where 

( 1 5 )  

Equation ( 1 4 )  has a relaxation time form where the non-equilibrium distribution 
function relaxes to the time- and field-dependent function g .  We observe that before 
the field is turned on ( T  < 0) the equilibrium momentum distribution 

where the equilibrium spectral density is given by 

Yo 
( E  - ~ ( k ) ) ’ + ( ; y o ) ’  

A ( k ,  E )  = 

satisfies (14) identically. H M  compute the steady state current, and  to d o  this we set 
E (  t )  = F (all transients have died away) in ( 1 5  ). The variable T drops out from the 
problem, and  we are led to consider 

x cos( U E  - d c  E (  k - F c )  (18) 

We now extract the current from (18). We proceed in two steps. First sum over k 
on both sides of (18). This gives 



Dynamical disorder in time-dependent electric jield 2899 

Next, we multiply (18) by k, and sum over it. The left-hand side gives -FN,  and using 
(19) we obtain the following explicit result for the current ( J  = x k  k f ( k ) ) :  

Defining a new variable k ’ =  k +  F l y , ,  and linearising with respect to F, gives after 
some algebra 

in complete agreement with H M  and also the Kubo formula result (Girvin and Mahan 
1979) (see equations (A14) and (A15) in H M ) .  

Now let us turn to the calculation sketched in J .  There the following expression 
for C‘ is used: 

4 

The kinetic equation is now 

Ovchinnikov and  Erikhman (1974) have given the lattice version of this equation, and  
its zero-field form appears also in the works of H M  and  Jayannavar and Kumar (1982). 
We observe that this equation is identical to the semiclassical Boltzmann equation 
which one would write for the G W N .  Equation (23) resembles also the conventional 
impurity Boltzmann equation. Observe however (and this is crucial) that the energy- 
conserving 6 function in the collision integral is missing. However, we emphasise that 
(23) is actually far more general than the Boltzmann equation: it was obtained with 
an  exact sequence of transformations starting from the quantum kinetic equation for 
the correlation function G‘. It is well known that the lowest-order gradient approxima- 
tion to the quantum kinetic equation in many cases (elastic impurities, electron-phonon 
interactions) leads to the Boltzmann equation; the G W N  is a special interaction in the 
sense that the quantum kinetic equation coincides with the Boltzmann equation. This 
property is a consequence of the one-point character of G W N .  

The current can be evaluated in a straightforward way starting from (23). As a 
preliminary, sum (23) over k to get ( N  = Z k f ( k ) )  

a 
- N = -  y o N + C  y ( k - k ‘ ) f ( k ’ ,  t ) = O  (24) aT k k ’  

or  N = constant. Thus the continuity equation is identically satisfied. Note that this 
is not the case for the model treated by H M :  the right-hand side of (14) does not vanish 
when summed over k. Thus, in general, the particle number, equation (19), depends 
on the field, and  the assumed underlying thermal background acts as a source (or sink) 
of particles. These problems, however, d o  not occur in linear theory, to which the 
final result (21) applies. In passing, we point out a related problem: the total particle 
number calculated with the exact equilibrium expression (16) 
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diverges. To see this, consider 

where we have suppressed unimportant multiplicative constants. The integral over F 

in ( 2 5 )  diverges because of the negative energy tail of ( 2 6 ) .  
Turning back to the evaluation of the current, we multiply ( 2 3 )  by k,  and sum over 

it, to obtain 

where we have used (7) and  assumed that X k k - y ( k ) = O  by symmetry (we consider 
crystals with inversion symmetry). Using the boundary condition J (  T = 0) = 0 (the 
field is switched on at T = 0), we obtain 

J = FNT. (28) 
This is an  intriguing result: the interaction with the G W N  potential has entirely dropped 
out. 

4. Other transport properties 

While the G W N  is unable to relax momentum, and  hence does not lead to a finite 
conductivity (this property is related to the absence of diffusion) i t  does affect the 
energy balance. Let us calculate the time dependence of the average kinetic energy 
with the kinetic equation ( 2 3 ) .  Multiplying ( 2 3 )  with $ k * ,  and summing over k,  we 
can show that 

(29) E (  ~ ) = C ; k ' f ( k )  = & (  T = o ) +  Y J V T + ; N F ~ T '  
h 

The two time-dependent terms in (29) can be interpreted as follows. The last term 
corresponds to free particles accelerating under the influence of a uniform electric 
field. The other term describes heating due to the G W N  interaction: thus it is yet another 
manifestation of the 'self-heating' effect discussed by HM.  

The present kinetic approach can also be used to rederive the results of Jayannavar 
and Kumar ( 1 9 8 2 )  with very little effort. They were concerned with the long-time 
behaviour of ( x 2 (  t ) ) ,  and they found non-diffusive behaviour, ( x 2 (  t ) )  - t ' .  To calculate 
( x Z ( t ) ) F , O  we replace the field driving term F * a / a k  by k . C R  (it can be shown that 
this replacement is exact). We extract 

( x 2 (  T ) )  = d R  R' C f ( k ,  R, T )  
I k  

by considering the equations of motion for ( x 2 ) ,  ( x k )  and ( k ' )  and obtain 

d 3 ( x ' ( T ) ) / d T ' =  E (  T = 0 ) + 2 y z N T  ( 3 1 )  
which can be integrated to give the long-time behaviour 

( x ' (  T ) )  + 1/3 y 2  NT3.  ( 3 2 )  
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If one chooses a Gaussian matrix element y ( k )  = Viexp(- fa2kz) ,  it is seen that 
(32) and (30) reproduce exactly the result of Jayannavar and Kumar (see their equation 
( 1 7 ) ) .  

5. Discussion 

In summary, we have analysed two different approaches to determining the behaviour 
of G W N  in an  external field. In a sense, neither of these approaches leads to an entirely 
satisfactory result: in the approach of H M ,  where an  underlying thermal equilibrium 
is assumed, problems arise with conservation laws (see discussion below equation 
(24)), whereas in the approach of J ,  where the one-point character of the G W N  is 
included also for the ‘scattering-in’ term in the collision integral, the G W N  interaction 
drops out entirely from the current, and is present only in the expression for the average 
kinetic energy. This state of matters would seem to indicate that the G W N  is too 
pathological to serve as a testing model for quantum kinetic theories. 

Finally we comment on the differences of the kinetic approach and  the Kubo 
formula approach. In general, the Kubo formula gives the linear transport coefficient 
in terms of a (thermal equilibrium) two-particle Green function. Given the interactions, 
a theory for this object can be developed, and  an  explicit expression for the transport 
coefficient is obtained. For the theory to be consistent, the result should agree with 
the one obtained from the linearised kinetic equation, and this is indeed the case for, 
e.g., electron-impurity and  electron-phonon scattering (see H M ,  Jauho 1983). This is 
not the case for the GWN: a linearisation of the G W N  kinetic equation is not meaningful 
because the thermal equilibrium distribution function does not satisfy it. This suggests 
that the application of the Kubo formula can be tricky: one should first ascertain that 
the problem under consideration maintains thermal equilibrium and to obtain this 
information requires an  investigation of the corresponding kinetic equation, which 
may be quite difficult in general. 
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